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Ionic solids exhibiting exceptionally high levels of ionic conductivity are found among the cation disordered 
ionic compounds of the silver halidechalcogenide type, the various cation substituted beta aluminas, and certain 
defect-stabilized ceramic oxides. We present in this paper a theoretical model for ionic transport phenomena in 
such “super” ionic conductors. The model is based on the hypothesis that there exists in the ionic conductor an 
energy gap c0 above which ions of mass M, belonging to the conducting species, can be thermally excited from 
localized ionic states to free-ion like states in which an ion propagates throughout the solid with a velocity *;n and 
energy E,,, = $Mv,‘. On account of the interaction with the rest of the solid such an excited free-ion like state is 
supposed to have a finite life-time T,,,. On the basis of a postulated Boltzmann transport equation for the thermal 
occupations of the various free-ion like states, simple expressions are derived for the ionic conductivity o, thermal 
conductivity KI, and thermoelectric power Q. The theoretical result for Q is well substantiated by available 
experimental data. The result for (r may be used to deduce empirical values for the characteristic “mean-free 
path”, lo = VETS, of the free-ion like state excited at the gap entry Ed. The characteristic lifetime r,, could be 
deduced in principal from measurements of the frequency dependent ionic conductivity U(W) which, according 
to the model, should be of the Drude type. 

Section 1. Introduction and Summary 

There is at present considerable experimental and 
technological interest in the properties and under- 
standing of solids of exceptionally high ionic 
conductivity (2). Such solids, examples of which we 
shall present below, exhibit ionic conductivities that 
can be as large as inverse ohm-centimeters at 
temperatures ranging from a little above room 
temperature to ceramic temperatures of the order of 
1800°K. Because in almost all cases the high ionic 
conductivities of these solids are achieved with a 
negligible degree of electronic conductivityt, there 
has been much interest in their possible utilization as 
solid electrolytes for various battery and fuel cell 
systems (I, 2). These highly ion conducting solids, 
which may perhaps be aptly called “super” ionic 
conductors, can be broadly divided into three main 
groups. These are: (a) the ionic compounds of the 
type typified by the cation disordered phases of the 
silver halides and chalcogenides, (b) the isomorphous 
series of hexagonal compounds exhibiting the so 

called beta-alumina structure, and (c) the defect 
stabilized ceramic oxides of the calcium fluoride 
structure. Examples of the first type of super ionic 
conductor are 

u-Ag*I a-cu*1 Na$ 
a-AgzS cr-Cu,*Se Ag$Br 
a-AgzTe u-Ag:SI &&We212 
a-Ag,*Se a-A&Hg14 RbAgXI, (Rb -+ K, 

Cs, NH,) 

The beta-alumina compounds comprising the 
second group are : 

t 

A* = Na*, Rb*, Ag*, K*, Li*, Tl*. 
ATO*nMz03 M = Al, Ga, Fe3+. 

n = 5-l 1 (integer). 

* Permanent address as from September 1, 1971; Brown 
Boveri Research Center, CH-5401 Baden, Switzerland. 

t Except for or-Ag,, or-Ag,Se and a-Cu,Se which have high 
electronic conductivity: see P. Junod, Helu. Phys. Acta, 32, 
601 (1960). 

Some members of the defect-stabilized ceramic 
oxide group (c) are the following: 

CaO*AO,* (A = Zr, Hf, Th, Ce). 
M203 .ZrO$ (M = La, Sm, Y, Yb, SC). 

In each of the above chemical formulas the con- 
ducting cation or anion species has been indicated 
by the use of an asterisk. 

The ionic compounds belonging to the first group 
can be structurally characterized as having a 
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relatively rigid crystalline framework composed of 
the nonconducting ionic species, with the con- 
ducting cation species distributed in a statistically 
disordered fashion among the available sites offered 
by the rigid nonconducting framework. There are 
usually several, and sometimes many, possible sites 
per conducting cation. As was first recognized by 
Strock (4) in 1934, the exceptionally high ionic 
conductivities of these solids result from the almost 
liquid-like state of the disordered cation species. An 
excellent general discussion of this group of solids 
has been given recently by Wiedersich and Geller 
(5). In the beta-alumina group of ionic compounds 
(6) cation conduction (A+)* takes place in planes 
which separate the nonconducting crystalline 
spinel-blocks of the beta-alumina structure. The 
conducting plane is characterized by a two- 
dimensional hexagonal array of 02- anions, with 
the ions (A+)* distributed in a random fashion over 
the two-dimensional manifold of possible cation 
sites defined by the fixed anion network. Thus, the 
essence of the cation disorder that is responsible for 
the high ionic conductivity of these solids may be 
regarded as a two-dimensional counterpart of that 
found prevalent in the first group of ionic solids. In 
the third group of ionic conductors, anion (O*-)* 
transport is animated by a relatively large and fixed 
number of (O*-)* vacancies produced by the 
stabilizing agent on account of the requirement of 
overall charge neutrality (7). For example, in the 
case of CaO*ZrOz, known in the literature as calcia 
stabilized zirconia, we may write the explicit chemical 

formula Ca2+Zr4? O*Z * where x denotes the 
fractional c&rce&Zazoo”n ‘of Ca. Thus, in this 
example, the addition of the stabilizing Ca introduces 
a fixed concentration of x/2 vacancies in the anion 
(O*-)* component (typically 0.1 5 x 5 0.2). The 
study of ionic conductivity in this group of com- 
pounds has been particularly interesting from the 
standpoint of observing the phenomenon as a 
function of the fixed vacancy content (8). 

The super ionic conductors presented in the 
foregoing text are different in several respects from 
the well-known conventional ionic conductors. 
Firstly, of course, there is the vast difference in the 
magnitude of the ionic conduction involved. For 
example, taking an extreme case, the ionic con- 
ductivity of the super ionic conductor RbAgJ, (9, 
10) at 250°K is some 17 orders of magnitude larger 
than that of NaCl at the same temperature (5). It is 
notable that in contrast to the case of conventional 
ionic conductors, the large conductivities of the 
super ionic conductors are attained at relatively 
small fractions of their melting points, and with 
correspondingly low activation energies for ionic 
transport. Figure 1 shows the dependence of ionic 
conductivity on temperature for some typical super 
ionic conductors. Figure 2 shows the same data’ as 
a function of the homologous temperature. Another 
major difference, connected with the high level of 
ionic conductivity, is the fact that the number of 

I We would like to thank Dr. Westbrook for supplying us 
with Figs. 1 and 2. Data for these figures are taken from the 
appropriate references given in Tables II-IV. 
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FIG. 2. The ionic conductivity versus homologous temperature Th. 

potentially mobile ionic species, or “carriers”, in 
the super ionic conductors is both large and fixed, 
independent of the absolute temperature. In the 
conventional ionic conductors, the number of 
potential carriers is small and usually temperature 
dependent (Schottky or Frenkel defects are thermally 
activated) (II). Another, and potentially exciting 
difference, is that in some of the super ionic con- 
ductors, most notably in those belonging to the 
stabilized ceramic oxide group, it appears possible 
that the mobile ionic carrier is transported in a 
cooperative fashion over “mean-free paths” that are 
typically many interionic distances (12, 13). The 
effective ionic mean-free path for ionic charge 
transport in the conventional ionic conductors is, of 
course, the interionic hopping distance. 

As in the case of the conventional ionic con- 
ductors, the underlying physical mechanism of ionic 
transport in the super ionic conductors is that of the 
thermal excitation of an ion from a localized 
oscillatory state to a state in which the ion moves 
translationally through the solid to some other 
available localized state situated at some finite 
distance from the locality of its initial state. Up to 
the present time, the ionic conductivity resulting 
from this mechanism has been generally discussed 
in terms of the conventional hopping formalism (II). 
Thus, an Arrhenius type of formula for the ionic 
conductivity is considered, the pre-exponential 
factor of which is proportional to the product of the 
square of some mean hopping distance, 6, and some 
mean local ionic oscillator frequency V. While this 
type of discussion is probably in many cases 
qualitatively valid, it is in practice rather unsatis- 

factory from the point of view of obtaining relevant 
information from experiment. For example, al- 
though an Arrhenius formula accounts in a natural 
way for the exponential temperature dependence of 
the observed conductivity, it cannot be used to 
deduce empirical values of say the mean hopping 
distance, d, since knowledge of the other key 
phenomenological parameter, fi, is quite unknown. 
Also, for the super ionic conductors, it is not 
entirely clear how one should further develop the 
Arrhenius theory of ionic conductivity in order to 
discuss, on a microscopic basis, other ionic transport 
effects such as, for example, thermoelectricity, 
thermal diffusion, and ionic response to a time- 
dependent electromagnetic field. For these reasons 
there has been very little theoretical discussion of 
general ionic transport phenomena published on the 
high ionic conductivity field. 

It is the purpose of the present paper to present a 
model theory of ionic transport processes in the 
super ionic conductors which affords a general 
treatment of the various transport phenomena and, 
within the confines of the model, allows the key 
phenomenological parameters of the theory to be 
obtained from experiment in an unambiguous way. 
In contrast to the approach used in the conventional 
theory of ionic conduction (II), special emphasis is 
placed in the present theory on the actual trans- 
lational motion of the conducting ion during 
passage between initial and final localized states in 
the solid. 

The basic idea which constitutes the framework 
of the present model is an attempt to regard the 
state of translational motion of a thermally excited 
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ion as a well-defined elementary excitation of the 
solid. Specifically, it is postulated that in such an 
excited state the conducting ion, of mass M, 
propagates through the solid in a free-ion like 
manner with a well-defined velocity v,,, and energy 
Ed-= $%z&,~. The energy spectrum of these elemen- 
tary excitations is assumed to be continuous for all 
energies E, greater than, or equal to, some charac- 
teristic threshold energy, eo, and to vanish for any 
E, < co. The “energy gap” l o is to be interpreted as 
a measure of the binding energy of the localized ion. 
The transport mechanism, then, is depicted here as 
the thermal excitation of ions, belonging to the 
conducting species, from localized ionic states to a 
spectrum of free-ion like states existing above a 
specific energy gap l o. 

Once a localized ion has been excited to a free-ion 
like state it cannot, of course, be expected to remain 
indefinitely in this state because of the retarding 
effect of its interaction with the rest of the solid. 
Eventually these interactions cause the propagating 
ion to decay into some available localized state 
within the solid. In order to represent the effect of 
these interactions in the present model we ascribe 
to each free-ion state a phenomenological life-time 
T,. Thus, if an ion is initially excited from some 
localized state to a free-ion like state of energy 
c&co), the ion is considered to remain in this 
specific state for a characteristic time T, before 
decaying to some other localized state. In this way a 
concept of an ionic mean-free path is introduced. 
Such a quantity may be taken to be I,,, = v,,, T, for an 
ion propagating in the free-ion like state of energy E,. 

The ideas of the model just presented may be very 
conveniently expressed in terms of a Boltzmann 
transport equation formulism for the thermal 
occupation of the free-ion like states. This formulism 
is presented in Section 2 where general expressions 
are obtained for the various linear ionic transport 
coefficients. Here, an explicit function for the 
spectrum of the free-ion like states is obtained from 
a simple statistical mechanical argument. In the 
limit that co % k,T, where k, denotes Boltzmann’s 
constant, the ionic transport coefficients may be 
expressed in terms of the mean-free path lo (=v~T~) 
and velocity v. = 2/2Co/~ of the free-ion like state 
at the gap energy l o. In Section 3 these expressions 
are discussed from an experimental standpoint. The 
theoretical expression for the ionic conductivity is 
used to deduce empirical values of Z. and v. from the 
observed ionic conductivities of the super ionic 
conductors. For the purposes of comparison, this 
procedure is also applied to the current experimental 
data on ionic self-diffusion in molten metals. On the 

basis of this analysis the super ionic conductors are 
classified according to whether ionic transport is 
associated with mean-free paths of the order of an 
inter-ionic distance or with mean-free paths of the 
order of many interionic distances. One theoretical 
prediction of the model, relating the ionic thermo- 
electric power (Peltier coefficient) in a simple way to 
the energy gap co, is very well substantiated by the 
available experimental data for this transport 
property. 

An important theoretical prediction, closely 
related to the underlying ideas of the present 
theoretical model, is that the ionic conductivity 
should have a definitive frequency dependence. In 
Section 4, it is shown that the frequency dependence 
of the ionic conductivity should be of the Drude 
type, a dependence well known in the electron 
theory of metals (14). The experimental observation 
of this frequency-dependent ionic conductivity 
would provide a direct measurement of the funda- 
mental free-ion like life-time 70. Some representative 
calculations of the effects of the frequency-dependent 
ionic conductivity on the electromagnetic absorption 
and reflection coefficients of a super ionic conductor 
are made. A deduction of the free-ion life-time 7. 
from such experiments would also be of importance 
from the standpoint of an independent confirmation 
of the possible existence of large free-ion like mean- 
free paths. 

The present paper is concluded by a brief dis- 
cussion in Section 5 of the connection of the present 
theory with the conventional hopping theory. 

Section 2. The Transport Theory 

A. Formal Specification of the Model 
The essence of the theoretical model of ionic 

transport processes outlined in the introduction is 
the assumption that there exists in the ionic con- 
ductor an energy gap, eo, above which ions of mass 
M, belonging to the conducting species, can be 
thermally excited from localized ionic states to 
free-ion like states in which an ion propagates 
throughout the solid with a velocity v, and energy 
E, = fMvm2. On account of the interaction with the 
rest of the solid, such an excited free-ion like state is 
supposed to have a finite life-time 7,. 

A theory of ionic transport processes based on 
these simple ideas may be very conveniently 
developed in terms of the thermal occupations, n,,,, 
of the various free-ion like states. Specifically, let 
nn,/4r denote the probability that an ion has been 
thermally excited to a free-ion like state of energy 
E,(>E~) in which it propagates through the con- 
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ductor within the solid angle dQ. The direction of 
propagationis v,,,/ Ivm I. We shall assume in the present 
treatment that the propagation velocity, v,,,, and 
hence the energy E,, is independent of the direction 
of propagation. The total number of thermally 
excited free-ion like states per unit volume, N, may 
be written as 

di2 
-% 477 

where Sz denotes the volume of the conductor, and 
the sum in (2.1) is over all possible free-ion energy 
states E,. The question of the actual spectrum of 
such states will be discussed shortly. For suf- 
ficiently small values of n, we shall assume that at a 
finite temperature T the Gibbs free energy of the 
conductor may be expanded according to 

G=Go+AH-TAS 

= Go + 
cs 

dL? 
- E,n, - 
4rr 

bTi 1 ph - dogn,), (2.2) 
m 

where Go denotes a constant independent of n, and 
k, denotes Boltzmann’s constant. Minimization of 
(2.2) with respect to It, yields the equilibrium thermal 
occupation 

n, 
Ox, -c,lksT (2.3) 

With regard to the question of the spectrum of the 
free-ion like states, let us define the function g(e,) 
such that g(e,)&, gives the number of free-ion like 
states per unit volume available in the solid with 
energies between E, and E, + a~,,,. The summation 
over the states m may then be replaced by an integral 
according to 

1 cl 0 c s -+ m&,) k. (2.4) 

We shall refer to g(e,) as “the density of states 
function.” In terms of g(E,&, (2.1) becomes 

Since z, has been assumed to be independent of 
direction, we have at equilibrium, 

co 
No = 

s 
de,g(c,) ePmikBT. (2.5) 

0 

An explicit expression for g(c,) may be obtained 
from the following argument. Firstly, the postulate 

of the energy gap implies that we take g(em) = 0 for 
all E, -C co. For E, > co, we note that the number of 
free-ion like states thermally excited at equilibrium 
per unit volume with energies lying between E, and 
E, + SE, is 

SNo = g(c,,J emfmlkBT SE,, (2.6) 

(%I 2 co). 

Let the number of potentially mobile ionic species 
per unit volume in the conductor be denoted by II. 
Now it follows from a well-known equilibrium 
statistical mechanical argument that the probability 
for a localized atom to be found in any energy state 
greater than E is the Boltzmann factor emEIkBT. Thus, 
the number of ions per unit volume lying in energy 
states between E and E + SE at equilibrium IS 

sN(e) = (n/k,T) emclkBT. (2.7) 

Since the present model assumes that the free-ion 
like states originate from the thermal excitation of 
ions of the conducting species from their localized 
states in the conductor, we may identify (2.7) with 
(2.6) for E > co and hence obtain the desired 
expression for g(e,). Thus, the density of states 
function will be taken as 

d%> = 0, %I < Eo (2.8) 
g(4 = n/h T, 6, > q. 

Substituting (2.8) into (2.5) we see that the total 
number of free-ion like states thermally excited per 
unit volume at equilibrium is 

No = n e-~dkBT. (2.9) 

In the nonequilibrium state n, may be a function of 
both the time t and position r. Explicitly, let n,(r, t) 
denote the value of the thermal occupation of the 
free-ion like state of energy E, at time tin the vicinity 
of a point r within the conductor. The ionic current 
at the point (r, t) will be given by 

i(r, t) = Ze 1 dE,g(c,) / gv,n,(r, t), (2.10) 
0 

where Ze denotes the charge carried by an ion 
belonging to the conducting species. The heat, or 
enthalpy, current, JH, furnished by the free-ion like 
states is likewise (cf. 2.1) 

J.(r,I)= jd%g(r,)s g%v.n,(r,t). (2.11) 
0 

At equilibrium n, is given by (2.3) and the cor- 
responding equilibrium charge and heat fluxes, 
(2.10) and (2.1 l), vanish. 
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We may now define the postulate concerning the appropriate for the locality r. The temperature of 
finite life-time TV of the free-ion like state. This this locality is denoted by T(r), and it is understood 
postulate is dew. by the assumption that for that &I,,, Q n,O(r). Substituting (2.16) into the 
small departures $&-I equilibrium the rate of 
change of the the&id occupation of the free-ion 

transport equation (2.12), and setting &,/at = 0, we 
obtain the steady state solution: 

like states is governed by a Boltzmann transport 
equation of the form 

Sn, = nmo 7, v; [ZeE + (em/T)VT]/kB T. (2.18) 

[i%z,(r, t)/i% + v; [hz,(r, t)/ar] = 
We have assumed Ze$(r) 4 E, and have retained 
only those terms in an,,, that are of first order in 

-[n,(r, t) - nmO]/Tm. (2.12) either E and VT. The ionic current may now be 

The left-hand side of this equation describes the 
calculated by substituting (2.10) and (2.18) into 

evolution of 11,(r, t) due to the free propagation of 
(2.10). Recalling that the equilibrium current 

the free-ion like state, while the right-hand side 
vanishes, we have 

represents the decay of the state on account of its i=o.E+or*VT, (2.19) 

interaction with the rest of the solid. The charac- 
teristic life time T, of the free-ion like state will be 

where Q and ur are in general, the tensors : 

assumed to be independent of the direction of 
propagation and to depend only on the energy of the (2.20) 

state E,. The transport equation (2.12) completes 
t7 = 3 1 dc,g(qJ 1 ~nmo7mvmvmr 

0 

our formal specification of the present model. 

B. Formal Expressions for the Transport 
Coefficients 

The transport properties of interest will be the 
ionic conductivity, ~7, the free-ion like contribution, 

Under isotropic conditions, we may take one-third 

K,, to the total thermal conductivity K of the 
of the traces of (2.20) and (2.21) to obtain the 

conductor, and the ionic thermoelectric power, or 
isotropic transport coefficients. The isotropic con- 

Peltier coefficient, Q. In the absence of an electronic 
ductivity is 

component of transport, the linear isotropic 
0 = 3 We)*/Wl O,L>, (2.22) 

macroscopic transport relations for the conductor where we have defined the average 

will be 
i=oE (2.13) <fm> = J &dd4f,e-'~'k~T, (2.23) 

J = -K,VT+ JH 
0 

= -(KL + K,)VT (zero ionic current) (2.14) for any function, fm, of the energy E,. We have 
introduced the “mean-free path” 

E = -QVT (thermoelectric field, zero ionic 
current), (2.15) 

I, := v, 7, (2.24) 

where KL denotes the lattice contribution to the 
for the free-ion like state of energy E,. The thermo- 

total thermal conductivity and J denotes the total 
electric power Q follows from equating (2.19) to zero 

heat flux. The above transport coefficients may be 
and use of the definition (2.15); 

calculated within the framework of the present Q = WeT) (<%, cm W<vm LX. (2.25) 

formalism by following the procedure of treating The calculation of the isotropic ionic conductivity, 
the Boltzmann transport equation well known in 
the electron theory of metals (15). 

K,, follows in a similar manner from (2.18), (2.16), 
(2.11), and its definition (2.14). The result is 

In the presence of a weak stationary electric field E 
and small uniform temperature gradient VT, the 
free-ion like occupations may be expanded as 

(%I2 4n 4J 
Kx = 3kBT2 

<%n &I LJ* 
1 - (v, 1,) (Em2 v, lm) (2.26) 

n,(r) = n,O(r) + Sn,, (2.16) C. Explicit Expressions for the Transport 

n,‘(r) = exp{-[e, + Ze$(r)]/k, T(r)}. 
Coefficients 

(2.17) 
We now employ the specific form (2.8) for the 

Here, 4(r) is the electric field potential, E = -a+/&, density of states function g(e,) in order to obtain 
and (2.17) is the equilibrium thermal occupation explicit results for the various transport properties. 
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The problem reduces to the evaluation of the 
averages of the type (2.23) over the free-ion like 
states. With the aid of (2.8) the average (2.23) is 

de,,, e-QJksTf (cm). 

(0 
For small (kBT/~,J we may write, after a repeated 
integration by parts, the expansion 

(fm) = nf (q-J e-co/ksT { 1 + C,(k, T/E,) + . . . 

CN(k3 T/EOIN + * * *I, 

where the coefficients C, are defined by 

(2.27) 

CN = ki”/f (41 WNf Wd~Nl,-,,. (2.28) 

In the limit that Ed s k,T, we have 

( fm) = nf ( l o) e-co’kBT (kB T < E,,). (2.29) 

It is seen from the definition of (fm) that this result 
could be formally interpreted in terms of an effective 
density of states function of the form 

&ff(%) = n&%l - 60). (2.30) 

At temperatures for which (kBT/q,) is not small the 
correction terms of the expansion (2.27) must be 
considered. However, the calculation of the various 
dimensionless expansion parameters (2.28), appro- 
priate for the ionic transport coefficients, will 
require a knowledge of the energy dependence of the 
ionic mean-free path, 1(~,), in the region of co. More 
specifically the energy dependence of T, is required 
since 1, may be written as 1, = (q)~,,,. 
Unfortunately, this information is not specified by 
the present theory. For this reason we shall in the 
following part of this paper generally restrict our 
attention to the low-temperature limit co/k, T + 1, 
where this information is not required. 

With (2.29) the general expression (2.22) for the 
ionic conductivity reduces immediately to the result 

u = &[(Ze)2/k, T] no0 1, e-QiksT, (2.31) 

where lo and o. denote, respectively, the mean free 
path and velocity of the free-ion like state excited at 
the gap energy co. In terms of the life-time 7. of this 
state (2.3 1) may be reexpressed as 

u = +[(Ze)2/kB TM] m. 7. e-co’ksT. (2.32) 

The general expression (2.25) for the thermoelectric 
power, Q, reduces to the particularly simple form 

Q = bWW * (dh 0. (2.33) 

On applying (2.29) to evaluate the various averages 
in the general result (2.26) for the thermal conduc- 

tivity, K,, however, we obtain the result 

KI = 0. (2.34) 

This result is not surprising. Aswepointed out above 
in writing (2.30), the low-temperature limit k,T -G co 
implies that only the free-ion like states excited at 
the gap energy ~~ are effective in ionic transport. In 
this case, it follows that the heat flux (2.11) contri- 
buted by the free-ion like states is proportional to 
the ionic current (2.10). However, the thermal 
conductivity is defined under conditions of vanishing 
ionic current [cf. (2.14)]. Hence, if the ionic current 
is zero, the heat current carried by the free-ion like 
states must also be zero. A finite thermal conduc- 
tivity, K,, will be obtained, however, at finite values 
of k,T/cO. In order to calculate this quantity to the 
first (nonvanishing) order in kgT/cO, the second 
term of the expansion (2.27) must be retained when 
evaluating the various averages of (2.26). On doing 
this we find 

t 
KI = (a/2) nk, u. lo(co/kB T) e-QlkgT, (2.35) 

where we have defined 

a = 1 + (24310) [dl(~)/d~l,,,,. (2.36) 

Equations (2.31), (2.33) and (2.35) are the main 
results of this section. The theory of transport 
processes developed in this section may be easily 
reformulated for the case where ionic transport is 
confined to a two-dimensional plane. As was 
mentioned in the introduction, such a situation is 
encountered in the beta-alumina family of ionic 
conductors. If we denote by nA the number of 
potentially mobile ions per unit area in a conducting 
plane of such a solid, and by b the distance between 
adjacent parallel planes, then it may be shown that 
in place of the result (2.31) we have 

0 ,, = HW2/ks Tl hdb) 00 10 e- co/ksT (2.37) 

for the ionic conductivity parallel to a plane 
direction. The result (2.33) for the thermoelectric 
power is left unchanged for a temperature gradient 
applied parallel to the conducting planes. Finally, 
KI(ll) is obtained from (2.35) by the replacement of 
n by +n/b. 

Section 3. Discussion and Application to Experiment 

The result (2.31) for the ionic conductivity is 

cr = 3[(Ze)2/kB T] no0 lo e-fo’keT, (3.1) 

where 

lo = vo 70, v. = 1/2colM (3.2) 
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denote, respectively, the velocity and mean-free path 
of the free-ion like state excited at the gap energy eo. 
7. denotes the life-time of this state and II the number 
of potentially mobile ionic species per unit volume. 
Since n, Ze, and M are assumed known for a given 
super ionic conductor the result (3.1) specifies the 
ionic conductivity in terms of two basic parameters 
of our theoretical model, namely, e. and TV. In the 
spirit of the theoretical model, co and 7. are to be 
regarded as constants which characterize a par- 
ticularionicconductor. The temperature dependence 
of u predicted by (3.1) is that of the observed 
Arrhenius type so that a plot of log(aT) vs. l/T 
yields a straight line whose slope and intercept are 
determined, respectively, by co and by the appro- 
priate pre-exponential factor in (3. I). Thus, empirical 
values of co and TV, and hence of lo and vo, may be 
obtained from the observed ionic conductivity data 
if n, Ze, and M are known. Later in this section, an 
attempt will be made to deduce such empirical 
values for various super ionic conductors. 

The result (2.33) for the ionic thermoelectric 
power predicts that this quantity is inversely 
proportional to the absolute temperature T, the 
coefficient of proportionality being essentially 
governed by the magnitude of the energy gap l o. 
Also, the sign of the ionic thermoelectric power is 
determined by the sign of the charge of the con- 
ducting ionic species. The observed values Qobs of 
the ionic thermoelectric power should thus follow 
the law 

ZeTQ,,, = const. = co. (3.3) 

Since the value of the constant co can be obtained 
from independent measurements of the temperature 
dependence of the ionic conductivity, 

-d(log Tu) 
Co = d(l/k,T) ’ (3.4) 

a direct experimental test of the theoretical pre- 
diction (3.3) is possible. Takahashi et al. (16) have 
recently measured the homogeneous ionic thermo- 
electric powers of a series of super ionic con- 
ductors belonging to the silver halide type. These 
conductors are listed in the first column of Table I. 
Indeed Takahashi observes that the magnitude of Q 
is proportional to T-’ and that the sign* of the 
thermoelectric power is positive, corresponding to 
the positive charge of the silver cation. The observed 
values of the constant ZeTQobs appropriate for each 

* Takahashi et al, (16) actually report negative values for the 
thermoelectric powers. This is because these authors have 
employed the definition E = &VT rather than the conven- 
tional definition E = -&VT. 
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TABLE I 

TEST OF THE THEOWTICAL RELATION (3,3) OF THE TEXT FOR 
THESILVERC~MPOUNDSSTUDIEDEXPERIMENTALLYBY 

TAKAHASHI 

Super ionic -=%bs 
conductor WI 

~0 CW 
Deduced from 
conductivity 

K‘ka4 0.092 0.095 
RbAg:II 0.078 0.098” 
N&.b.% 0.093 0.095 
Aiz: Hi& 0.61 0.69 
Ag:Hgo.,,So.du 0.15 0.14 
AdHgSe212 0.17 0.15 
k&Hgo.~Se~.~~o.P 0.11 0.10 
Ag~.,Hgo.,,Teo.3510.s 0.14 0.17 

’ In recent pressure work on RbAg&, Bundy et al. (38) have 
deduced co = 0.08 at room pressure. 

conductor are shown in the second column of Table 
I. The corresponding values of eo, deduced by 
Takahashi from independent measurements of the 
ionic conductivity on the same specimens, are 
shown in the third column of the Table. We see that 
the theoretical prediction (3.3) is very well sub- 
stantiated by Takahashi’s measurements. 

An experimental test of (3.3) for the conductors 
belonging to the other groups of super ionic con- 
ductors does not seem possible at the present time 
owing to the lack of suitable experimental data on 
the ionic thermoelectric power. Pizzini et al. (17) 
have recently measured the thermoelectric powers of 
various stabilized zirconia compounds, but un- 
fortunately in these measurements it does not seem 
possible to separate out the required homogeneous 
thermoelectric power from the inhomogeneous 
contribution resulting from the ionization reactions 
at the measuring electrodes. We have not been able 
to locate measurements of Q for the beta-alumina 
group of conductors. Such measurements would be 
of particular interest in the present context. 

In the absence of radiative heat transfer, the total 
thermal conductivity K of a super ionic conductor 
will be 

K=K,tK,, 

where KL denotes the usual lattice contribution 
(phonon transport) and KI denotes the contribution 
(2.35) arising from the free-ion like states. Using the 
result (2.31) for the ionic conductivity, we may write 
K, in the form 

KI = aTLI, (3.5) 
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TABLE II 

FREE-ION LIKE PARAMETERS FORTHESUPER IONIC CONDUCTORSOFTHESILVERHALIDEANDCHALCOGENIDETYPE 

Super ionic n 
conductor (lo** cm+) (e?) 

00 
(lo5 cm set-*) 

70 
(lo-l3 set) 

Reference 
to data 

a-Ag*I 
a-Ag; S 
u-Ag: Se 
a-Ag:Te 
NaTS (Ts 520°C) 
Naf S (T 2 52VC) 
a-Ag: SI 
p-Ag: SI 
Ag: SBr 
RbAg,*& 
a-Ag;HgI, 

1.57 0.10 0.42 5.2 2.2 1.97 (26) 
3.44 0.11 0.44 6.4 2.8 1.67 (27) 
3.23 0.10 0.42 4.4 1.85 1.70 (27) 
2.82 0.14 0.50 4.0 2.0 1.78 (28) 
1.43 0.77 2.56 0.98 2.5 2.24 (29) 
1.43 1.66 3.73 1.8 x 105 6.7 x lo5 2.24 (29) 
2.41 0.08 0.38 1.5 0.56 1.81 (30) 
2.55 0.21 0.61 0.98 0.60 1.78 (30) 
2.70 0.28 0.70 1.3 0.93 1.75 (30) 
1.13 0.10 0.42 3.1 1.3 2.03 (IO) 

0.77 0.77 0.84 11.4 96 2.07 (31) 

where L, defines an “ionic Lorentz number” 

LI = (9ccL,,/2~* Z*) (cO/kB T), (3.6) 

in which Lo denotes the Sommerfeld electron 
Lorentz number Lo = (r2/3)(kB2/e2) = 2.45 x lo-* 
v*/“K*. The temperature dependence of KI is the 
same form as u, whereas it is well known (18) that 
KL follows the law KL a T-l. Thus the temperature 
dependence of the total thermal conductivity should 
follow the law 

TK = const. + const. e-so/ksT. 

The magnitude of K,, however, is probably too 
small for it to be practically separated from the 
dominant lattice thermal conductivity K=. Taking 
u - 1 Sz-’ cm-‘, Ed - 0.15 eV, Z= 1, and CL- 1 as 
typical values for the most highly conducting super 
ionic conductors, we have 

KI - 0.2 x 10M4 W cm-’ ‘K-l, 

which compares with values of KL of the order of lo-* 
W cm-’ “K-’ (18) at temperatures at which ionic 
conductivities of the order of 1 52-l cm-’ are 
achieved. Thus although the temperature depen- 
dence of KI is distinctive, its magnitude relative to 
KL is expected to be too small to be observed 
experimentally. 

We now return the topic of our discussion to the 
ionic conductivity. As a function of temperature the 
observed ionic conductivity data can always be 
fitted to an Arrhenius relation of the form 
o(T) = (u~/T)~-~‘~B~, where u. and E are constants. 
According to the theoretical result (3.1), and the 
definitions, (3.2), we have 

E=co, and u. = +[(Ze)*/kB M] m. TV. (3.7) 

For the beta-alumina family of ionic conductors, 
for which ionic conductivity is restricted to a 
parallel series of two-dimensional planes, the 
appropriate formula for u. is 

00 = KW2/kB Ml h/b) l o 70, (3.8) 

which follows from the result (2.37) of the preceding 
section. Thus if Z, M, and n, or n,/b, are known, 
empirical values of the basic theoretical para- 
meters, co and TV, and hence, in view of (3.2), v. and 
lo, may be deduced from the observed conductivity 
data. Tables II-IV show the results of such analysis 
applied to a selection of super ionic conductors 
belonging to the three groups of conductors out- 
lined in Section 1. The first column of each table 
indicates the particular ionic conductor and the 
second the assumed value of n, or of nA, where 
appropriate. The next four columns show, respect- 
ively, the deduced values of eo, uo, TV, and lo. The 
sixth column of each table lists an interionic 
distance, ro, typical of the particular conductor, with 
which the deduced value of lo may be compared. In 
Table II, r, has been chosen as the mean interionic 
radius 

+ro 3 = l/N,, 

where N1 denotes the total number of ions per unit 
volume of the conductor. In Table III, which deals 
with the beta-alumina series, r. has been defined 
according to 

rrro2 = l/N,, 

where N, denotes the total number of ions per unit 
area of the conducting mirror plane. In Table IV, 
which studies the defect-stabilized oxides, r. is the 
O*- nearest-neighbor distance in the calcium 
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TABLE III 

FREE-ION LIKE PARAMETERS FOR THE BETA-ALUMINA FAMILY OF SUPER IONIC CONDUCTORS 

303 

Super ionic naP 
conductor (lOi cm-‘) (e?) 

Do 
( lo5 cm set-i) 

70 

(10-i” set) 
Reference 
to datab 

(Lit)*-beta 4.5 0.38 3.2 0.46 1.5 1.97 (6) 
(Na+)*-beta 4.5 0.17 1.2 0.5 0.6 1.97 (19) 
(K+)*-beta 4.5 0.23 1.1 0.23 0.25 1.97 (6) 
(Rb+)*-beta 4.5 0.31 0.84 0.15 0.13 1.97 (6) 
(Ag+)*-beta 4.5 0.18 0.56 1.4 0.8 1.97 (19) 
(Tl+)*-beta 4.5 0.36 0.58 0.57 0.33 1.97 (19) 

’ An average conducting plane containing 1.22 cations per planar cell has been assumed for all the beta-aluminas. 
b For Li+, K+, and Rb+ betas, tracer diffusion data was converted to conductivity data on the assumption that the Nernst- 

Einstein relation is modified by a correlation factor equal to 0.6 as experimentally verified by Whittingham and Huggins (19) 
for Na+, Ag+, and Tl+ betas. 

fluoride structure. Finally, in the last column the 
number of the reference to the experimental 
conductivity data is given. 

In obtaining the results shown in Table II for the 
super ionic conductors of the silver halide and 
chalcogenide type, the assumption was made that 12, 
the number of potentially mobile ionic species per 
unit volume, is to be identified with the total number 
of cations per unit volume belonging to the dis- 
ordered conducting species. Thus, for example, in 
RbAgJ, all of the silver cations have been assumed 
to be potential carriers. The results in Table II for 
this group of conductors show that co is typically of 
the order of tenths of electron volts, and that 7. is of 
the order of an inverse oscillator frequency, i.e., a 
few times lo-l3 sec. The free-ion like velocity a0 is 
typically of the order 0.5 x 10’ cm see-’ with the 
corresponding mean-free path, lo, of the order of a 

mean interionic radius, ro. We should perhaps stress 
here that the deduced values of 7. and IO are subject 
to an appreciable amount of uncertainty in the 
extraction of the pre-exponential factor u. from the 
observed conductivity. Also, it is not always certain 
that all of the ions of the conducting species partici- 
pate in the conduction process, as assumed here. 
The tabulated values of 7. and Z, should, therefore, 
only be taken to be indicative of the correct order of 
magnitudes. Two ionic conductors listed in Table II, 
c+Ag2Hg14 and the higher temperature phase of 
Na$, do, however, exhibit mean-free paths that are 
orders of magnitude larger than a typical interionic 
distance, and thus constitute anomalous exceptions 
to the general trend established in Table II. 

Table III shows the results of our analysis for the 
beta-alumina family of ionic conductors. Here nA 
was taken to be equal to the total number of cations 

TABLE IV 

FREE-ION LIKE PARAMETERS FOR THE SUPER IONIC CONDUCTORS OF THE DEFECT-STABILIZED CERAMIC OXIDE TYPE 

Super ionic 
conductor 

n 
(I@’ cm-‘) (e:) 

4.43 1.28 3.93 43 169 2.57 (12) 
5.60 1.54 4.31 69 298 2.57 (12) 
4.62 1.46 4.19 86 360 2.53 (32) 
3.28 0.76 3.08 8 25 2.54 (33) 
3.17 0.93 3.34 18 60 2.57 (33) 
3.13 1.02 3.50 21 75 2.58 (33) 
3.09 0.97 3.42 10 34 2.59 (33) 
2.21 1.12 3.68 15 56 2.55 (34). 
3.59 1.43 4.14 0.17 0.7 2.55 (35) 
2.07 1.06 3.58 0.67 2.4 2.8 (36) 

(105 clkc-l) (lOeTp set) 
Reference 

to data 
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per unit area in the conducting mirror plane of the 
beta-alumina structure. The main feature of this 
tabulation is that, with the possible exception of 
Li+- beta-alumina, the deduced values of TV and &, 
are all considerably lower than that of a typical 
inverse oscillator frequency and mean interionic 
radius. This may indicate that the number of 
potential mobile ionic species in the beta-aluminas 
is considerably less than that of the total available 
number of conducting cation species. Such a 
suggestion has in fact been recently made by 
Whittingham and Huggins (19), who conjecture that 
the effective number of ionic carriers in the beta- 
aluminas are to be identified with a small fraction of 
cations which occupy certain interstitial sites in the 
conducting planes. If this suggestion is followed 
here, the deduced values of 7. and 1, would be some 
5 to 7 times greater than those shown in Table III. In 
this case we would have lo more like a mean inter- 
ionic radius. 

In the defect-stabilized ceramic oxides 02- 
transport is animated by the presence of the fixed 
concentration of O*- vacancies (7). In the analysis of 
these conductors, presented in Table IV, we have 
identified 12 with the number of vacancies per unit 
volume, since for small enough concentrations it is 
the vacancy that is the distinguishable mobile 
carrier. Table IV shows that the deduced values of 7. 
and lo are typically one or two orders of magnitude 
greater than those deduced for the two previous 
groups of super ionic conductors. The only excep- 
tions appear to be Ca-stabilized Hf02 and Y- 
stabilized Th02. In all cases, a0 is of the order of 
several times lo5 cm* set-‘, i.e., a sound velocity. 
The present analysis would thus indicate that the 
translational motion of a conducting vacancy in 
this class of conductors persists, at sound velocities, 
over distances that are typically many lattice 
spacings. Such a conclusion would add support to 
the conjectures of Carter and Roth (12) and of Roth 
(23) that the mechanism of ionic transport in Ca- 
stabilized ZrO, involves a series of correlated ionic 
hops through regions of ordered arrangements of 
O*- anions and vacancies. It should be stressed, 
however, that the conclusions drawn from Table IV 
do depend upon the assumption that the number of 
potentially mobile ions is to be identified with the 
concentration of O*- vacancies. While this assump- 
tion is reasonable for small vacancy concentrations, 
it is not clear whether the relatively high levels of 
vacancy concentrations characteristic of the present 
materials are sufficiently small to still warrant the 
validity of this assumption. 

In general it appears, then, that the various super 

ionic conductors can be classified according to 
whether ionic transport is associated with a mean- 
free path of the order of some typical interionic 
distance or with a mean-free path which is at least 
an order of magnitude greater than a typical 
interionic distance. 

Nearly all of the super ionic conductors belonging 
to the first group of conductors exhibit the former 
magnitude of mean-free path, together with life 
times that are measurable in units of lo-i3 sec. The 
same statement applies to the beta-alumina group if 
Whittingham and Huggins’ interpretation of nA is 
adopted. The conducting cation species present in 
these two groups of conductors have been often 
likened to a molten ionic component that is con- 
fined to the solid by the charge neutralizing crystal- 
line framework of the nonconducting ions (4,5).* It 
would be of interest to compare the values of lo and 
7. deduced above for these two groups of ionic 
conductors with those that could be deduced for the 
ionic component of a molten metal. The ionic 
density in the molten metal is, of course, quite 
comparable to that of the conducting species in the 
present solids. Now it may be shown, following a 
calculation similar to that given for the ionic con- 
ductivity in Section 2, that the present model of ionic 
transport yields for the ionic self-diffusion co- 
efficient the result 

D,(T) = +uo lo eecOikBT (kB T Q eo). 

Thus, if we assume that the present model is also 
applicable to the ionic component of a molten 
metal, appropriate values of the basic theoretical 
parameters may be deduced from the observed (36) 
OS(T). Values of co, ao, 70, and Z. deduced in this way 
are shown in Table V for ten liquid metals. Indeed it 
is seen that the values of these parameters are 
comparable to those found above for the first two 
groups of super ionic conductors. The free-ion like 
mean-free paths deduced for the liquid metals are of 
the order of magnitude of the nearest-neighbor 
distance in the solid state. 

The values of 7. and lo found for the higher 
temperature phase of Na2S and for a-AgzHgI, are, 
however, exceptional, and these solids join most of 
the defect-stabilized type of conductors in exhibiting 
the large values of To and lo. The question of the 
credibility of these large values naturally arises. Do 
they indicate that the particular carrier involved 

* In fact, Roth (39) has noted the rms vibration amplitudes 
of the ions in the conducting plane of beta-alumina are those 
expected on the basis of the Lindemann melting law for a 
two-dimensional liquid. 
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TABLE V 

FREE-ION LIKE PARAMETERS FOR THE IONIC C~MFQNENTS OF LIQUID METALS’ 

Liquid 
metal (105 czsec-1) (lO-:fo SW) 

Nearest 
neighbor 

distance (A) 

Na 2.5 0.11 0.95 3.6 3.4 
K 1.3 0.11 0.8 8.5 6.8 
cu 8.5 0.42 1.1 3.4 3.8 
Ag 5.8 0.33 0.8 3.4 2.7 
Zn 6.55 0.22 0.8 3.8 3.0 
Hg 4.1 0.05 0.22 8.2 1.8 
Ga 5.1 0.05 0.36 2.6 0.94 
In 3.8 0.11 0.42 4.8 2.0 
Sn 3.5 0.11 0.43 4.9 2.1 
Pb 3.3 0.19 0.42 15.5 6.5 

,J Data of the form D = DoPolkBT for the self-diffusion constant is taken from the tabulation of Ref. (37). 

3.71 
4.63 
2.56 
2.89 
2.66 
3.01 
2.44 
3.25 
3.02 
3.50 

propagates freely over such large distances in the 
solid as the theoretical model would imply or, on the 
contrary, do they indicate that the theoretical model 
has broken down? There are probably more 
arguments to support the latter conclusion than the 
former. It could, for example, be argued that, in 
practice, the gap energy e. should be considered a 
function of the absolute temperature, in which case 
the pre-exponential factor, a,, of the ionic con- 
ductivity would be enhanced by an “entropy factor” 
(20) of the form eSIkB, where s = -deo/dT. The 
possibility of large mean-free paths is nevertheless an 
intriguing thought, and it would be interesting to 
have some sort of independent measurement of lo, 
or equivalently, of TV. It is pointed out in the next 
section that such a measurement is afforded by the 
frequency-dependent ionic conductivity U(W). 

Section 4. Frequency Dependent Ionic Conductivity 

In this section we consider the frequency- 
dependent ionic conductivity and the effect of this on 
the phenomena of the absorption and reflection of 
electromagnetic radiation by an ion conducting 
medium. 

The linear current density induced in an ionic 
conductor by a periodically varying external field 
E = E(q,w)e-iw’+4’r is (14): 

i = a(q, w) E(q, 0) eiq’r+w*, (4.1) 

where u(q, o) denotes the wave-vector and frequency- 
dependent ionic conductivity. In the limit of a 
slowly varying applied field, u(q,w) --f a(O,O) = u, 
which is the static conductivity considered in 
Sections 2 and 3. In order to calculate the q and w 
dependent conductivity in terms of our present 

theoretical model, we need only generalize our 
previous static treatment of the Boltzmann equation 
to the case of the periodically varying field (4.1). 
Writing as in Section 2, n, = n,,,O + an,,,, the 
linearized transport equation for the increment in 
the thermal occupation an,,, is 

The solution for 6n, is of the form ih, = 
&z,(q,w) e*Q’r+wt, where substitution of this form 
into (4.2) yields 

The resulting ionic conductivity may be calculated 
with the use of (2.10) and the definition (4. l), giving, 
in general, the q- and w-dependent ionic conductivity 
tensor 

cs(q,w) = g I’ de,g(E,) x 
B 

s 

dQ v, v, r, e--cm/kBT 
4~ 1 - ior, + iv;qrm’ (4.4) 

For wave vectors sufficiently small that ql,,, Q 1, or 
alternatively, for sufficiently large electromagnetic 
phase velocities, w/q + v,,,, the third term in the 
denominator of (4.4) may be discarded. Within 
these limits u(q,w) is independent of q and the 
isotropic frequency-dependent conductivity is 
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With the use of our model (2.8) and the result (2.29), 
(4.5) reduces, for k, T 4 l o, to the expression 

U(W)= -~ 1 (-w2 nvo lo e-Eo,kBT 
3 k,T(l -iw~~) ’ 

In view of (2.31), we may write this result as 

U(W) = u/(1 - iWTo), (4.6) 
where u denotes the static ionic conductivity. Thus, 
we have the simple result that the frequency 
dependence of the ionic conductivity is determined 
by the dimensionless product of the frequency w and 
the life-time 7. of the free-ion like state at the gap 
energy Ed. This type of dependence is well known in 
the electron theory of metals, in which a result of the 
form of (4.6) is known as a Drude formula (14). The 
result is of particular interest from the point of view 
of our theoretical model, for according to it meusure- 
ment of the frequency-dependent ionic conductivity 
would determine the characteristic free-ion like life- 
time TV. As pointed out in the previous section, an 
independent measurement of 7. would enable one 
to settle the question of the validity of the large 
values of lo and To that were empirically deduced in 
Section 3 for some of the super ionic conductors. 

The frequency-dependent ionic conductivity may 
be an important factor in governing the absorption 
and reflection of electromagnetic radiation incident 
on a specimen of super ionic conductor. For the 
wave vector q for the propagation of electromagnetic 
radiation in a conducting dielectric medium is given 
by the solution of the well-known (14) dispersion 
relation, 

q2 c2/w2 = ED(q, 0) + (47+J) u(q, w), 

= 4% w), (4.7) 
where c denotes the velocity of light in vacua and 
ED(q,u) denotes the q, w dependent dielectric con- 
stant of the medium. EI(q, w) defines an “apparent” 
dielectric constant for the medium. If over some 
range of frequency the dielectric constant function 
E&q,W) is either known or unimportant compared 
with the second term of (4.7), electromagnetic 
absorption and reflection measurements will be able 
to provide an experimental determination of u(w), 
and hence of To. In order to gain an idea of what one 
might expect to observe experimentally we present 
some calculations of the electromagnetic absorption 
and reflection coefficients based on a simple model 
in which ED(q, W) is taken to be some real constant ED. 
These model calculations will not, of course, be 
applicable to regions of frequency for which 
ED(q,cO) is in reality a strongly varying function of w, 
such as the frequency range covering the optical 

lattice vibrations (21). The effects arising from any 
such strong structure of $&W) would have to 
appear as appropriate superpositions on the simpler 
calculations which we present here. 

In terms of the constant ED model, our result (4.6) 
for U(W) yields the following solution of the disper- 
sion relation (4.7) : 

q = q’ + iq”, 

where the real and imaginary parts, q’ and q”, of the 
wave vector q for the propagation of electromagnetic 
radiation of frequency o in the medium of the ionic 
conductor are given by 

q’ = ;. 1/&F. [(A2 + B2)‘Q + A]‘Q 3 (4.8) 

q” = :x&J2 * [(AZ + B2)“2 - A]“2, (4.9) 

where 
Fi = 1 - [U/(1 + W2T02)], (4.10) 

WO/W 

B=(l +W2T02)’ 

on having introduced the definitions 
a = wg T,,, (4.12) 

wo=4nu/c,. (4.13) 

The results (4.8) and (4.9) have been written in such a 
way that the quantities A and B give, respectively, 
the real and imaginary parts of the apparent 
dielectric constant <r(w) of the conductor in units of 
the constant ED. Equation (4.12) defines the dimen- 
sionless parameter a as w. TV. From (4.13) we see 
that w;’ is just the characteristic time of spontaneous 
decay of an arbitrary net charge placed in a medium 
of dielectric constant cD and conductivity a. The 
parameter a thus specifies the magnitude of 7. in 
units of this characteristic decay time. 

The electromagnetic absorption coefficient a is 
defined as the imaginary part of q and is thus given 
by (4.9). The reflection coefficient R, for electro- 
magnetic radiation incident normally on a plane 
surface of ionic conductor, is 

R = qn2 + w - (4c)12 
q”Z + [q’ + (OJ/c)12 * 

(4.14) 

Figure 3 shows the calculated absorption co- 
efficient, in units of (wO/c)d/ED/2, as a function of the 
reduced frequency CIJT~ for various values of the 
parameter a. In order to calculate the reflection 
coefficient, it is necessary to actually specify the value 
of eD. We have arbitrarily taken the value cD = 3 and 
the resulting calculated values of R are shown in Fig. 
4 as a function of WT~ for the same Values of a as 
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FIG. 3. The calculated electromagnetic absorption coefficient versus frequency for various values of the parameter OL. 

were used in Fig. 3 for a. Figures 3 and 4 exemplify 
the theoretical behavior of the Drude conductivity 
(4.6). The functional form of the absorption co- 
efficient as a function of frequency is that of a broad 
maximum, the position of which increases with 
increasing values of CC. The reflection coefficient 
fa1l.s off from its low frequency limit of unity as ~7~ 
increases from zero to values approaching 1, while 
for large a70 it approaches the optical limit 
(EA’2 - 1)2/(QJ iI2 + 1)2. As the value of a increases, the 

70t \ \ -” 

I I 
Oo.01 0.1 

I v, 
I IO 40 

(JJTO 

FIG. 4. The calculated electromagnetic reflection co- 
efficient versus frequency for various values of the para- 
meter 0~. 
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transition between these two regions of behavior 
becomes sharper, giving rise to the appearance of a 
“transmission edge”. 

The magnitude of a is determined by the product 
of w. and 70. Assuming that Q, is of the order of a few 
times unity (4.13) gives w. - 1013 set-’ for u of the 
order of a few Sz-’ cm-‘, corresponding to the 
highest levels of ionic conductivity possible for the 
super ionic conductors. If the free-ion like mean-free 
path is of the order of an interionic distance, we 
expect 7. to be of the order of a few times lo-i3 sec. 
In these cases, we have the parameter a of the order 
of unity or so. Values of CL far in excess of unity are 
not expected. The value of the absorption coefficient 
crforTO- lo-i3 set w - 1013 see-’ and E D - 3, is of 
the order of 250 cm-i Ofor WT~ $1. The experimental 
observation of such absorptions would, of course, 
depend on whether or not these absorptions could 
be separated out from those due to other effects in 
the ionic crystals, particularly from those due to 
optical phonons (21). 

If 7. is considerably larger than the typical value 
of lo-l3 set, corresponding to large free-ion like 
mean-free paths, it is possible to have the parameter 
cz very much greater than unity. For example, if we 
accepted the large mean-free paths deduced for the 
ceramic oxides in Section 3 as true, then at the best 
levels of ionic conductivity the value of cc might be as 
large as 102. For such large values of CL the ionic 
conductor behaves as though it had an effective 
dielectric constant Q(W) given by 

EI(W) = ED Ab), 

= $,{I - [a/(1 + 0,’ To2)]}. 
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This dielectric constant has a zero at w = w,, where If (5.1) and (3.1) are equivalent, then we must have 

1 + WC2 To2 = a (a > 11, 

or,fora% 1, 

VI-J lo = Uo2Yo, 

or, on eliminating uo, 

w, = d/a/T,. 

For w < wo, E&J) is negative, and there is no 
propagation through the conductor, while for 
w > wo, Ed is positive and the conductor becomes 
transmitting.* Thus for large c( the conductor should 
exhibit a “transmission edge” at o = w, = 1/Z/70. 
Assuming TV - lo2 and 7. - 10-l’ set for a particular 
case, we have w, - 1012 set-‘. From the experi- 
mental standpoint, a possible search for such a 
transmission edge in the ceramic oxides is probably 
made difficult by the high temperatures (T 2 1500°K) 
at which reflection measurements would have to be 
carried out. 

But for the interstitial hopping mechanism the 
free-ion like mean-free path lo may be identified with 
the hopping length a,, so that 

l/Q E Yg, (5.2) 

if (5.1) and (3.1) are to be equivalent. We now recall 
that what is really meant by the ionic oscillator 
frequency v. in the conventional hopping theory is in 
fact precisely the inverse of the life-time 7. of the 
excited ionic state. Thus, for the interstitial mech- 
anism (3.1) and (5.1) are equivalent results. 

Section 5. Connection with the Conventional 
Hopping Theory 

We now conclude this paper with a brief discussion 
of the connection of the present theory with the 
conventional hopping theory. 

In order to demonstrate the validity of (5.2), we 
first note the statistical mechanical argument (22) 
that the exponential factor e91kBT represents the 
fraction of time spent by a localized ion in energy 
states greater than E. Then if we define P(E) to be 
the number of transitions per unit time made by a 
localized ion to energy states greater than E, we have 
by definition,* T~/P(E)-’ = eeElkgT, or 

Our result (3.1) for the ionic conductivity bears a 
close formal resemblance to the Arrhenius expres- 
sion for the ionic conductivity of a conventional 
ionic conductor. Supposing, for example, that at a 
temperature T we have a concentration n*(T) of 
interstitial ions present in a conventional ionic 
conductor. Then the Arrhenius expression for the 
ionic conductivity resulting from this concentration 
of interstitials is, assuming cubic symmetry (22), 

P(E) = A e-ElkB*. (5.3) 

The expression used for this “hopping rate” in the 
Arrhenius theory (22) is, of course, just 

o = $[(Ze)‘/k, T] n,(T) uo2 v. eCElksT. (5.1) 

Here a0 denotes the “hopping” distance between an 
interstitial ion and a neighboring (vacant) inter- 
stitial site, y. the vibrational frequency of the 
localized interstitial ion and E the “migration 
energy” required to effect the ionic hop. The charge 
on the interstitial is Ze. If we now compare (5.1) and 
(3.1) and identify nl(T) with IZ and E with eo, then 
the two expressions differ only in that the factor 
a& appears in (3.1) in place of the product uo2 v. that 
appears in (5.1). 

P(E) = v. emElkS*, (5.4) 

where v. is conventionally interpreted as the 
frequency, or some mean frequency, of oscillation 
of the localized ion. Clearly, however, in view of 
(5.3), y. is to be properly interpreted as the inverse of 
the life-time To of the thermally excited state. 

The conventional hopping theory is thus charac- 
terized by two basic phenomenological parameters, 
the activation energy E and the life-time 7. of the 
activated state. Applied to the conventional hopping 
mechanism, the free-ion like model of the present 
paper presents an alternative, although equivalent, 
formulism for constructing a transport theory in 
terms of these two key phenomenological para- 
meters. 

The question arises as to whether or not these two 
results are equivalent. We argue that they are, in fact, 
equivalent. 

There remains, of course, one feature of the free- 
ion like model that has no counterpart in the 
conventional hopping theory, namely the postulate 
of the free-ion like relation E, = #fvm2. We may use 

* That is, partially transmitting, since the fraction 
(~2~ - I)*/(@ + 1)’ of the incident radiation is reflected by 
the surface. 

*P(E)-’ is the mean time which has to elapse before a 
transition is made to energy states >E. 
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TABLE VI 

THE INVEIUE LIFE-Tws CALCULATED ACCORDING TO 
FORMULA (5.6) OF THE TEXT FOR ATOMIC SELF-DIFFUSION IN 

METALS 

Metal 
Migration” VO 

energy (eV) (1012 set-I) 

Debye 
frequencyb 
(1012 set-‘) 

cu 1.08 7.1 7.1 
Ag 0.83 4.2 4.7 
Au 0.82 3.1 3.4 
Al 0.62 7.4 8.8 
Ni 1.5 19.6 8.9 
Pb 0.56 2.1 2.1 
W 2.85 6.3 6.5 
Ge 1.0 6.6 7.6 
Pt 1.38 4.2 4.7 

’ Data taken from the review article by N. L. Peterson (23). 
As data on germanium was also available this element has 
been included in the above table. 

* Calculated according to vr, = ks &,/h, where values of the 
Debye temperature BI, were taken from the tabulations given 
by C. Kittel(24). 

this relation to express the free-ion like mean-free 
path lo as &, = T,-,-. Now for the particular 
case of the hopping mechanism in a conventional 
ionic conductor we may identify lo with the jump 
length a,, in which case it follows that 

-__ 
r. = aodA4/2E. (5.5) 

Alternatively, in view of the identification (5.2), we 
have the result 

vo = -b, d2EIM. (5.6) 

Thus, applied to the conventional hopping mech- 
anism, the free-ion like model predicts that the 
atomic oscillator “frequency” v. that appears in the 
Arrhenius hopping rate formula is related to the 
hopping distance a,, the migration energy E and the 
ionic mass M by the explicit formula (5.6). In Table 
VI, we have applied formula (5.6) to the particular 
case of atomic self-diffusion in metals in which it is 
thought that the dominant mechanism of mass 
transport is via the vacancy mechanism. The second 
column shows the experimentally determined (23) 
migration energies E and the third column the 
values of v. that are calculated from the theoretical 
formula (5.6). The jump distance a, is known from 
the crystal structure of a particular metal. The 
fourth column lists the respective Debye frequencies 

vD of the metals as obtained from specific heat data 
(24). With the exception of Ni we see that there is a 
remarkable agreement between the calculated values 
of v. and the observed Debye frequencies. We con- 
sider this agreement to constitute fairly satisfactory 
evidence for the basic validity of the postulate of the 
free-ion like relation between E, and u,. Lattice 
dynamical calculations of the Arrhenius frequency 
vo, based on the reaction coordinate method (25), 
give values of v. somewhat smaller than, although of 
the same order of magnitude of, vD. 
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